Wool 염료 및 염색

(주)부광에프디 김호 kho9029@empal.com

한국섬유개발연구원 섬유정보팀

목 차

제1장 염색이론

1. %	· 모제품의 염료선택 및 사용법	
1)	염료의 조건과 선택]	L
2)	염료 물성에 대한 화학 구조적 접근	2
2. %	· 모의 화학 구조상의 특징	
1)	WOOL의 화학적 구조 관찰	3
2)	화학적 구조에 따른 물리적 섬유의 손상	3
3)	Cystine결합의 중요성 ······	1
4)	양모 친화적 염료선택 (3
5)	양모용 염료선택(3
6)	WOOL의 구조에 따른 염료선택	7
	(기) 산성복합 염료 : Lanaset Dyes type ·······	3
	(L) 반응성 염료 : Lanasol, Neosol type ······10)
	(c) 1:2 Metal Complex Dyes	3
3. ŧ	간 염	
1)	중성염 망초의 균염효과15	5
2)	PH를 4.5동일 조건으로 조정 염색한 결과15	5

제1장 염색이론

- 1. 양모제품의 염료선택 및 사용법
- 1) 염료의 조건과 선택

색 (Color)

- 밝은 색상을 선호
 - 여러종류의 염료를 C/M하여 일정 색상을 낼때 배합색의 종류가 많을 수록 채도가 떨어짐

견뢰도 (Fastness)

● 모든 부분에서 최상의 견뢰도를 갖는 것은 현실적으로 불가능

용해성 (Solubility)

- 절대 용해도와 용해속도
 - 산성염료의 경우 20-50g/I (90℃)이면 적정
 - 용해속도를 높임으로 하여 상용성 편리함

상용성 (Competability)

● 한 염료 Maker의 3원색 구조에서 염착속도가 유사한지의 판단

선택성

● 혼방소재의 경우 타섬유에 대한 오염도의 최소화

경제성

● 염료의 단위 무게당 단가 보다는 동일 염색시 염색 단가 비교에 의한 경제성 평가

유해성

- 특정 유해물질 함유 여부
 - Benzidine을 포함한 20여개 유해 amine류의 사용여부 중요 (MSDS)

2) 염료 물성에 대한 화학구조적 접근

수용성 염료

분산염료를 제외한 모든 염료는 물에 환용시켜 염료가 분자 (Ion) 상태에서 섬유에 염착,고착됨 염료의 화학구조가 염색과정시 염료의 모든 물리적, 화학적 성질을 결정함

균염성

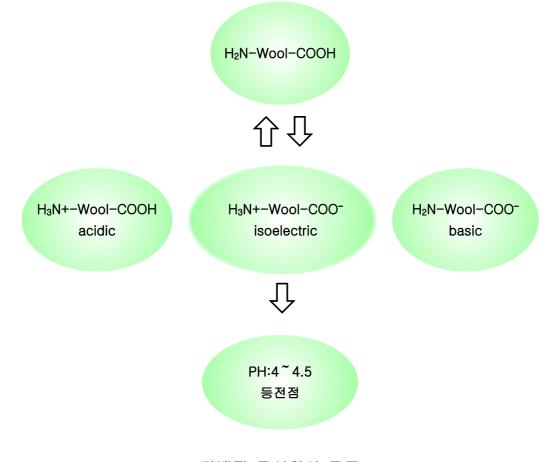
염료분자의 섬유상에서의 Migration현상에 의해 결정됨 일반적으로 친수성 관능기를 많이 가지고 있는 염료분자 Migration현상이 우수함 (균염성이 양호)

Levelling Type

습윤견뢰도

염료의 염색후 습윤견뢰도는 소수성 관능기를 많이 가지고 있는 염료분자가 좋음

- 염색시 염착속도가 빠르며 불균염의 위험 성이 있음
- 물에 대한 염료의 친화력이 적으므로 습윤견뢰도 우수함
- 염료의 용해도 불량


Milling Type

염료분자의 크기 및 형태

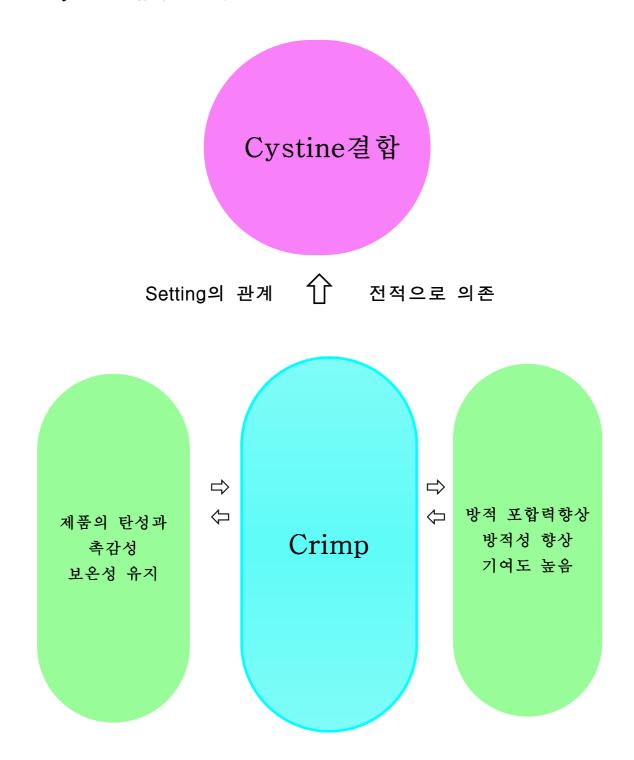
- 일반적으로 염료분자의 구조가 작고 간단할수록 염료의 Migration 현상이 증가
- 염료의 분자구조가 클수록 Migration 현상이 감소하며 섬유조직 속으로의 침투 확산이 느리고 불량한 경향 있음

2. 양모의 화학 구조상의 특징

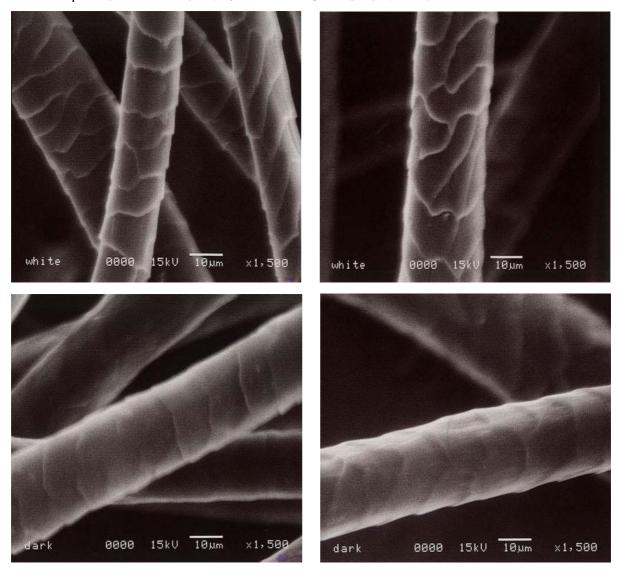
1) Wool의 화학적 구조 관찰

<단백질 구성원의 구조>

2) 화학적 구조에 따른 물리적 섬유의 손상

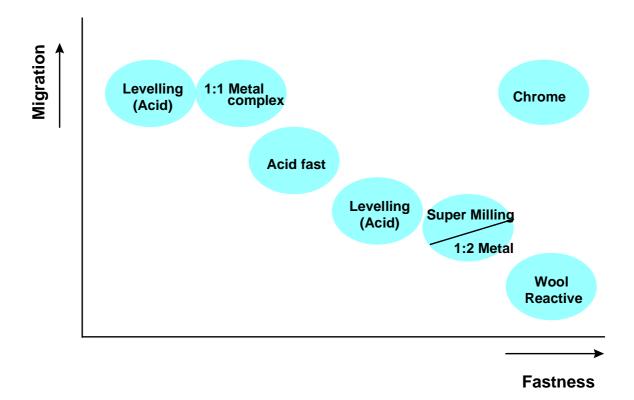

양모섬유의 주 구성원인 단백질 구조에서 염색시 동반하는 치명적 손상은 양모 자체의 가수분해와 결합을 이루는 Cystine결합(-S-S-)이 잘 깨짐으로 인하여 WOOL에 치명적인 손상을 초래한다.

가수분해는 산의 강도가 강할수록 많이 일어나며 Cystine결합이 끊어지며 이것은 염색 후 기계적 강도의 현저히 저하를 가져오며 촉감 또한 불량하게 되며 Setting 성도 저하된다.


< Cystine bridge>

※ Cystine 결합 : 2분자의 시스틴 중 황이 -S-S-결합을 하는 것.

3) Cystine결합의 중요성



※ Crimp : 양모 표면에 가지고 있는 비늘 형태의 모양으로 된 것.

4) 양모 친화적 염료선택

Wool에 대해 염색적으로 친화력을 갖는 염료로는 Acid, Mordant(Chrome), Metal complex 그리고 Reactive dyes이다.

< WOOL용 염료의 Migration 성질과 Wet fastness와의 상관관계>

위의 도표에 의하면 각 염료의 특징을 현장의 경험과 Maker의 염료제품의 특성에 따라서 정확한 특징을 알 수 있다.

5) 양모용 염료 선택

◆ ACID DYES

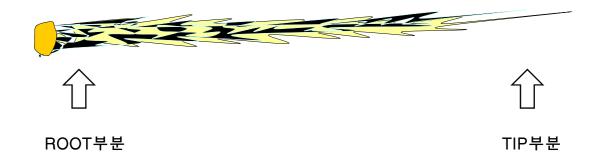
일반적으로 bright한 shade가 선택가능하며 migration이 매우 좋다.

- 1 LEVELLING TYPE
 - ② 친수성 관능기를 가지고 있다.(Sulfonic acid, Carboxylic acid, Phenolion group, Sulfon amid etc)
 - ⓑ 염료가 물에 대한 친화력이 좋아서 Migration이 극대됨.
 - © Wet, milling fastness가 약한 단점이 있다.
- 2 MILLING TYPE
- ⓐ 염료의 화학적 구조상 소수성 관능기(Methyl, Ethyl group, Halogen group) 를 부여한 염료

- ⓑ Wet, milling fastness에서 Levelling type의 염료에 비하여 상대적으로 우수한 견뢰도를 가지고 있다.
 - ⓒ 상대적으로 Levelling type의 산성염료 보다 균염성이 나쁘다.

♦ MORDANT DYES

- ① Wet fastness나 Light fastness등 모든 견뢰도에 양호함.
- ② Chrome 사용 이전까지는 Levelling성을 띄기 때문에 균염성 양호함.
- ③ Chrome은 맹독성인 6가 이므로 EU(EDTA), Eco Tex등에 부적합 하다.
- ④ 염색 후에 발생하는 염색 폐수에 Cr 이온이 함유 하므로 심각한 수질 공해 문제를 야기 시킨다.


◆ METAL COMPLEX DYES

- ① Mordant에서 한 단계 발전시킨 염료로서 1:1, 1:2대칭, 1:2비대칭으로 나누어진다.
 - ② 1:1은 균염성이 좋고 1:2는 견뢰도 및 Build up성이 좋다.
 - ③ 단점으로써는 밝은 색상 을 재현하기가 힘이 든다.

◆ REACTIVE DYES

- ① WOOL protein과 결합 할 수 있고 특수한 반응기(Reactive group)를 함유하고 있는 염료
- ② 염색 과정에서 섬유와 염료가 반응기를 매개체로 화학적인 결합으로 이루어지는 염착
 - ③ 밝고 다양한 색상의 피염물을 얻을 수 있다

6) WOOL의 구조에 따른 염료 선택

※ ROOT(에피큐티클) 부분

소수성이 강하며 침투력에 저항벽의 형태를 이루고 있으며 기계적 화학적 공정에서 급격한 손상을 초래하며 일반적으로 Acid 및 Metal complex등의 염료를 사용하는 것이 안전하다. 그러므로 최종제품의 균염 문제가 발생할 확률 높다.

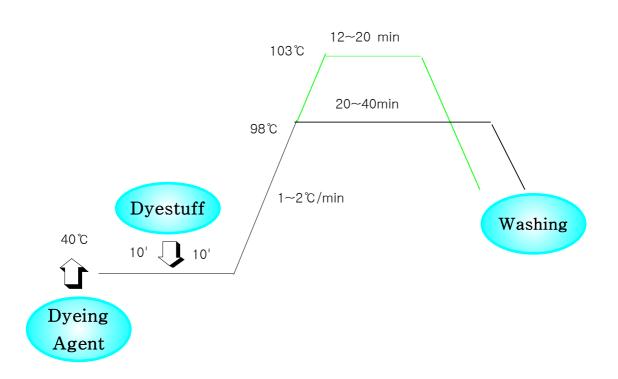
(기) 산성복합적 염료: LANASET Dyes type

각 염료의 특성을 이용하여 가장이상적인 결과를 얻을 수 있도록 조합한 염료

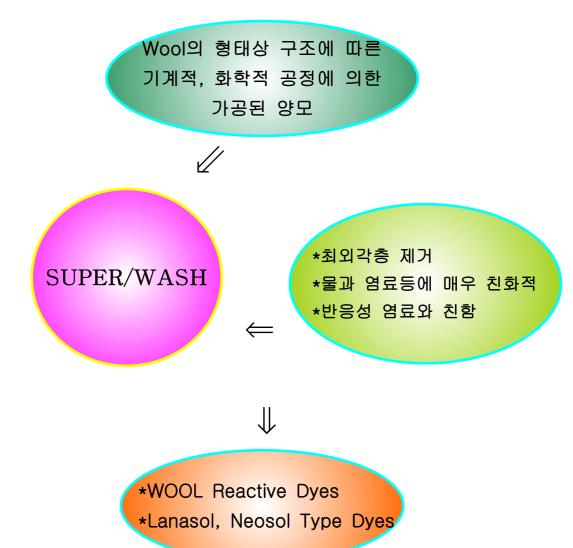
*산성염료의 Migration *Metal complex의 내광 견뢰도 및 Build-up *Wool Reactive염료 최 상의 Wet fastness

염색시 우수한 재현성과 균염성을 얻음

복합적 산성염료


Dyeing -> Washing

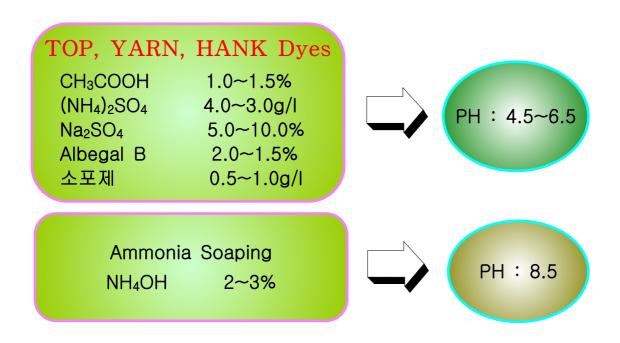
TOP, YARN Dyes

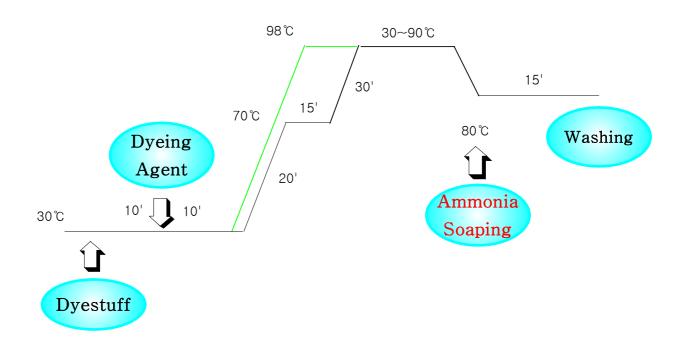

CH₃COOH1.0~1.5%CH₃COONa1.0~2.0g/lNa₂SO₄1.0~10.0%Transfeirn MKS1.0~1.5%소포제0.5~1.0g/l

PH: 4.5

(L) WOOL Reactive Dyes: Lanasol, Neosol Type

이 판능기 반응염료 다른 염료 사용시 보다 염색물의 물성 및 촉감이 아주 우수함

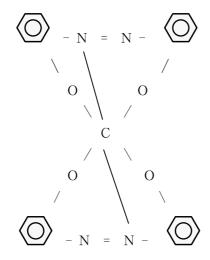

*** WOOL Reactive Dye의 특징 ***


- ④ 반응기가 Bromoacrylamide로 양모 분자와 축. 중합반응을 동시에 하므로 염색 시 양모 분자와 분자 사이에 가교 결합을 형성함.
- ® 염색 중 손상된 양모섬유는 염료에 의하여 형성된 가교결합으로 인하여 강. 신도와 탄성이 다른 염료보다 크게 향상됨.
- © 고착율이 매우 높아 염색 재현성이 높음.
- ① 미 고착 염료가 적어서 후처리시 쉽게 제거가능 하며 수, 알칼리, 땀 견뢰도가 우수함.

*** Dyeing Mechanism ***

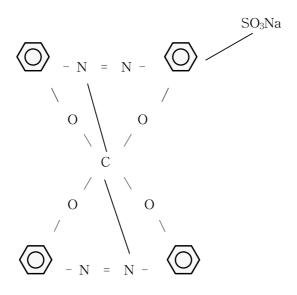
*** WOOL 반응성 염료 ***

Dyeing -> Soaping-> Washing

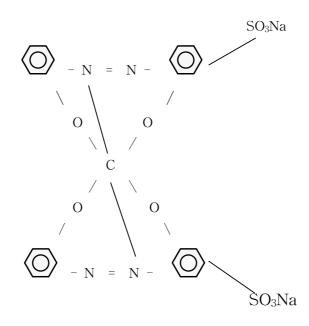


(四) 1:2 Metal Complex염료

1:2 Metal Complex염료는 주로 아조 염료이며 크롬이나 코발트가 제조 공정 중에 착염화되는 것으로 반응기를 가지고 있는 두개의 아조기가 한 개의 금속원자와 착염화되어 만들어지는 염료이다.


(1) Non-Sulphonated ⇒ 대칭형

- 술폰기를 가지고 있지 않음
- 균염성이 좋음
- 일광 견뢰도 양호함
- 용해도가 좋지 않음


(2) Monosulphonated ⇒ 비대칭형

- 하나의 술폰기를 가지고 있음
- 균염성이 Non-Sulphonated보다 다소 떨어지며 용해도는 좋음

(3) Di-Sulphonated ⇒ 대칭형, 비대칭형

- 술폰기를 2개 가지고 있음
- 균염성이 좋지 않음
- 용해도가 좋음
- 염착성이 다소 떨어짐

용해도

Di-Sulphonated>Mono-Sulphonated>Non-Sulphonated

균염성

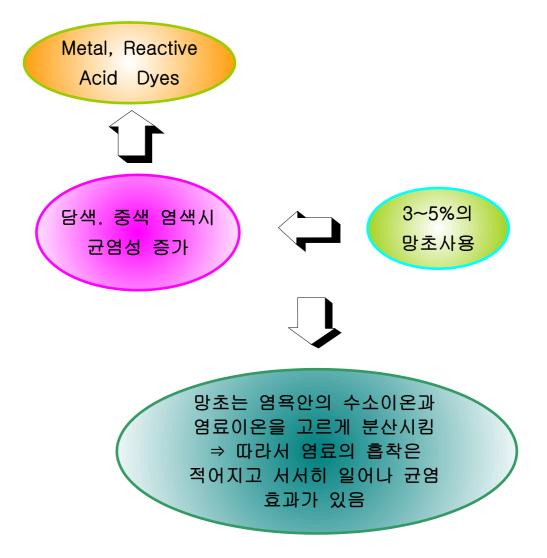
Di-Sulphonated<Mono-Sulphonated<Non-Sulphonated

염착성

Di-Sulphonated<Mono-Sulphonated<Non-Sulphonated

3. 균염

1) PH를 4.5 동일 조건으로 조정 염색한 결과



이유: 양모의 분자구조 특성에 기인하며 양모는 분자 내에는 양이온, 음이온을 모두 갖고 있으며 산이나 염기에 반응하여 염을 형성할 수 있다.

따라서 Buffer system(CH₃COOH+CH₃COONa)을 사용하지 않으면 염색이 진행되는 과정에서 PH가 상승하여 최종 제품의 품질을 저하 시킨다.

그러나 초산이나 개미산등 단독으로 사용 시에는 염색 도중에 산을 추가 하거나 초기 PH를 낮게 하여 Start해야 한다.

2) 중성염 망초(Na₂SO₄)의 균염효과

